SMCT TA 32N14 A10

Thin-Pak™ Voltage Controlled SolidTRON®

Data Sheet Rev 3 CAO-20140515

<table>
<thead>
<tr>
<th>Device</th>
<th>Package format</th>
<th>Code</th>
<th>Semiconductor type</th>
<th>Off-state non-trigger voltage V_{DRM} (V) (X100)</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMCT</td>
<td>TA</td>
<td>32</td>
<td>N</td>
<td>14</td>
<td>A10</td>
</tr>
</tbody>
</table>

Description:
N-Type MOS-controlled thyristor.
Metal surfaces tinned with 63Sn/37Pb solder.
Package is perforated, metalized ceramic substrate attached to silicon die.

Applications:
EFD / EFI / ESA / LEFFI / SAF
Capacitor Discharge
Pulse Power

Features:
1400V peak off-state voltage
4kA surge on-state maximum current
120kA/us di/dt performance
<100ns turn on delay / no turn-on delay jitter
High peak current capability
Low on-state conduction losses
Low inductance packaging
Solid state reliability
Epoxy underfill to protect high voltage terminals

Package

Use of Gate Return Bond Area

The MCT was designed for high di/dt applications.
An independent cathode connection or "Gate Return Bond Area" is provided to minimize the effects of rapidly changing Anode-Cathode current on the Gate control voltage, ($V=L*di/dt$).

It is critical the end user utilize the Gate Return Bond Area as the point at which the gate driver reference (return) is attached to the VCS device.
Package Dimensions

![Image of package dimensions]

Process and Storage

1. All metal surfaces are tinned using 63pb/37sn solder.
2. Installation reflow temperature not to exceed 260° C.
3. Appropriate to all MOS gated devices, proper ESD handling and storage must be observed.

Test Profile

1. Gate Integrity at 25° C and 25 Volts applied is measured as Pass or Fail
2. Di/Dt discharge at 25° C and 1250 Volts is measured for 100 pulses against <100ns and >4Ka specifications
3. Voltage Blocking Stability at 80° C and 1500 V is measured against < 200nA specification
4. Turn on Threshold at 25° C and 12 V is measured to ensure latching <1.5V specification
5. Forward Voltage Drop at 25° C and 10 A is measured against <1.1V specification
6. Gate Integrity at 25° C and 25 V applied is measured as Pass or Fail