The A540 is ideal for rectifier circuits and is processed by multi-diffusion, utilizing 33mm diameter silicon. It is supplied in a disk package ready to mount using commercially available heat dissipators and mechanical clamping hardware.

MAXIMUM ALLOWABLE RATINGS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>REPETITIVE PEAK REVERSE VOLTAGE, V_{RRM}</th>
<th>NON-REPETITIVE REVERSE VOLTAGE, V_{RSM}</th>
<th>V_{RRM}/V_{RSM}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_J = -40^\circ C$ to $+185^\circ C$</td>
<td>$T_J = 0^\circ C$ to $+185^\circ C$</td>
<td></td>
</tr>
<tr>
<td>A540LD</td>
<td>2400 Volts</td>
<td>2500 Volts</td>
<td>2000 Volts</td>
</tr>
<tr>
<td>A540LC</td>
<td>2300</td>
<td>2400</td>
<td>1950</td>
</tr>
<tr>
<td>A540LB</td>
<td>2200</td>
<td>2300</td>
<td>1850</td>
</tr>
<tr>
<td>A540LA</td>
<td>2100</td>
<td>2200</td>
<td>1750</td>
</tr>
<tr>
<td>A540L</td>
<td>2000</td>
<td>2100</td>
<td>1700</td>
</tr>
</tbody>
</table>

Lower voltages available — consult factory.

Average Forward Current .. 1000 Amperes, 1Φ Average
Peak One-Cycle Surge Current ... 12,000 Amperes
Minimum I^2t Rating (for times > 1.5 msec) 285,000 Ampere2 Seconds
Minimum I^2t Rating (at 8.3 msec) 597,000 Ampere2 Seconds
Maximum Forward Voltage Drop ($T_C = 160^\circ C$ Case Temperature, 1000 Amps. Peak) 1.08 Volts
Peak Reverse Leakage Current ($T_J = 200^\circ C$, $V = $ Rated V_{RRM}) 35mA
Maximum Thermal Resistance, R_{thj} (Double-Side Cooling) 0.06$^\circ$C/Watt
Storage Temperature, T_{STG} .. -40°C to $+200^\circ$C
Operating Junction Temperature, T_J -40°C to $+200^\circ$C
Mounting Force Required .. 2200 Lbs. ± 10%
.. 9.8 KN ± 10%

A $\varnothing = 2.00$ in (50.8 mm)
B $\varnothing = 1.26$ in (32.0 mm)
D = 1.02 in (25.8 mm)
1. MAXIMUM ON-STATE CHARACTERISTICS

2. AVERAGE FORWARD POWER DISSIPATION VERSUS AVERAGE FORWARD CURRENT

3. MAXIMUM HEAT EXCHANGER TEMPERATURE VERSUS AVERAGE FORWARD CURRENT FOR DOUBLE-SIDE COOLING

NOTES:
1. Power "D" adds .01°C/W to account for both case to dissipator interfaces, when properly mounted; e.g., \(R_{D,JA} = .06°C/W \); See Mounting Instructions.
2. DC Thermal impedance is based on average full cycle junction temperature. Instantaneous junction temperature may be calculated using the following modifications:
 - end of conducting portion of cycle
 - 120° sq. wave add .0065°C/W along entire curve
 - 180° sq. wave add .0047°C/W along entire curve
 - 180° sine wave add .0026°C/W along entire curve
 - end of full cycle
 - any wave, subtract .0026°C/W along entire curve

4. TRANSIENT THERMAL IMPEDANCE - JUNCTION-TO-CASE

2 of 3
5. Maximum Surge Current Following Rated Load Conditions

6. Subcycle Peak Surge Forward Current and I^2t Rating Following Rated Load Conditions