Solid State Discharge Switch Replacements

John Waldron and Ken Brandmier
Silicon Power Corporation
280 Great Valley Pkwy
Malvern, PA 19355
Outline

• Overview of Solidtron’s Enabling Technology
 – Pulse discharge targeted designs

• Solidtron Performance
 – Hyper-fast discharge capabilities
 – High action capabilities

• Solid State Discharge Switch Replacements
 – Motivation
 – Approach
 – Performance
 – Experimental results

• Summary

• Questions
Super-GTO Vs. GTO

SGTO is an IC foundry-fabricated GTO mated with Silicon Power’s proprietary low inductance ThinPak package.

Fabricated in 3.3cm² die in 6 inch silicon at very high yield, repeatability and uniformity!

SGTO Advantages:

- Cell structure 3000 x denser
- Upper transistor >100x improved
- Forward drop greatly reduced
- Three times lower turn-off switching loss
- Turn-on improved by 2 orders of magnitude
Solidtron Vs. Super-GTO

Solidtron follows SGTO strategy, focusing on pulse discharge versus turn-off applications.

Solidtron Advantages

- Emitter area maximized
- Internal metal interconnect density improved
- Upper transistor gain further improved
- Increased cathode bonding pad area

8 inch starting material and improved manufacturing process further improving yield while driving cost down.
Solidtron: The Enabling Technology

GTO Versus Solidtron, Fundamental Differences

- Higher cell density improves current uniformity, drastically improving $\frac{di}{dt}$ capability
- Upper base doping profile improved for higher gain
- Metal interconnects improved, increased upper transistor gain and electrode bonding area

Traditional thyristor design revisited, capturing IC house capability
1600V Solidtron Product line:
- Simple gating schemes (low power, easy isolation)
- Unmatched $\frac{di}{dt}$ capability (>200kA/μs observed)
- Easily implemented in series/parallel configurations
- Efficient bidirectional current capability

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay</td>
<td><90 ns</td>
</tr>
<tr>
<td>Jitter</td>
<td><100 ps</td>
</tr>
<tr>
<td>Fall time</td>
<td><40 ns</td>
</tr>
<tr>
<td>$\frac{di}{dt}$</td>
<td>>200kA/μs</td>
</tr>
</tbody>
</table>

Anode Current I_{pk} 160ns ½ period

Capacitor Voltage (Ch2 Max Ref only)

170ns ½ cycle ring down – Yellow = Anode Current, Cyan = Capacitor Voltage
Solid state discharge switch offers:

- Rugged yet simple gate trigger
- Repeatable fabrication and performance
- Bidirectional current flow capability
- Very high MTBF, minimizing down time

Hyper-Fast 1600V Solidtron Discrete products

Available in:
- TO-247
- TO-264
- Custom SMT packages
Solidtron Performance: Ultra-Fast

4000V Solidtron Product line:
• Maintains simple gating schemes
• $\frac{di}{dt}$ capability >100kA/μs
• Bidirectional current capability
• **Offers more compact HV Solid State Discharge Switches (fewer series levels)**

Single 0.9”x0.6” chip (2cm2 active area), 6.5kV* die pulse discharge test:
• 4kV
• 45kA I_{pk}
• Bidirectional current flow
• $\frac{di}{dt} = 105$kA/μs

*6.5kV BV, 4kV rating
Solidtron Performance: High Action

6.5kV High Action Solidtron Performance

Single 0.9”x0.6” chip (2cm² active area), 6.5kV die pulse discharge test:
- >20kA peak capability
- 20.8V forward drop
- 1mΩ effective on-resistance
- \(I^2t \) capability > 10kA²s

Measured \(\frac{di}{dt} \) capability to 100kA/μs
Solid State Discharge Switches

Motivation

- Compliance with RoHS
- Eliminate conditioning requirements
- Eliminate requisite heaters
- Simplify gating
 - Requires 24V, <<1W supply and a ground referenced TTL trigger signal
- Improve efficiency
 - In both energy transfer and off-state conditions
- Improve turn-on delay and jitter
- Increase usable lifetime
 - No terminal erosion
- Eliminate liquid cooling requirements
- Increase mechanical installation flexibility
- Improved performance over competitor’s solid state switch replacements
- Smaller volume of competitor’s solid state switch replacements
 - No large clamps
 - Much smaller heat sinks
Motivation

- Short voltage withstand time
- Complicated gating sequence required

Grid 1 - Pulsed
- Unloaded grid 1 drive pulse voltage: 300 V, 1000 µs
- Grid 1 pulse duration: 2.0 ms
- Rate of rise of grid 1 pulse (see note 5): 1.0 kV/µs
- Peak inverse grid 1 voltage: 450 V
- Loaded grid 1 bias voltage: see note 8
- Peak grid 1 drive current: 0.3 A, 1.0 A

Grid 1 - DC Primed (See note 6)
- DC grid 1 unloaded priming voltage: 75 V, 150 V
- DC grid 1 priming current: 50 mA

Cathode
- Heater voltage: 6.3 ± 5% V
- Heating time: 5.0 min

Reservoir
- Heater voltage (see note 1): 6.3 ± 5% V
- Heating time: 5.0 min

E2V CX1180 Thyatron
25kV peak
1kA max
Motivation

Excelitas HY53 Hydrogen Thyatron

Absolute Ratings
(Minimum)(Non-Simultaneous)

- e_{py}, Peak Forward Anode Voltage (Notes 1, 2 & 3) 40 kV
- i_{bo}, Peak Forward Anode Current (Notes 4, 5 & 6) 10,000 A
- i_{ox}, Peak Reverse Anode Current (Note 7) 0.1 Ib
- e_{py}, Peak Reverse Anode Voltage (Note 8) 25 kV
- e_{py}, Min., Minimum Anode Supply Voltage 3500 V DC
- t_p, Anode Current Pulse Duration, (Note 5) 10 μsec.
- I_{an}, Average Anode Current 8 A dc
- I_{p}, RMS Average Current (Note 9) 47.5 A ac
- P_a, Anode Dissipation Factor (V x A x pps) (Note 10) 160 x 10^4
- t_r, Maximum Anode Current Rise Rate 1 x 10^4 a/sec

A Typical Operating Conditions (Note 11)
(Simultaneous)

- e_{py}, Peak Forward Voltage 35 kV
- i_{bo}, Peak Forward Anode Current 5000 A
- t_p, Anode Current Pulse Duration 2.0 μsec.
- F_r, Pulse Repetition Rate 500 Hz
- I_{an}, Average anode current 0.66 A dc
- I_{p}, RMS Average Current 90 A ac
- P_a, Anode Dissipation Factor (V x A x pps) 77 x 10^4
- t_r, Maximum Anode Current Rise Rate 1 x 10^4 a/sec
Motivation

NL-8900 Ignitron

Mechanical:
- Envelope: Stainless Steel
- Anode Material: Stainless Steel
- Mounting Position: Axis Vertical, Anode Up
- Net Weight: 24 lb (10.9 kg)
- Diameter: 7.25" (18.4 cm)
- Seated Height (Nominal): 10.75" (27.3 cm)

Ignitor Ratings:
- Voltage:
 - Open Circuit (Ignitor +): MIN 1000 V, MAX 35000 V
 - Inverse (Ignitor -): MIN 5 V
- Current, Short Circuit: 500 A
- Length of Firing Pulse, 1/2 Sine Wave: 5 to 10 µs

Thermal:
- Type of Cooling: Liquid
- Inlet Water Temperature (MIN): 10 °C
- Inlet Water Temperature (MAX): 30 °C
- Water Flow (At MAX Current): 3.0 GPM
- Cathode Temperature (MAX): 35 °C
- Anode Header Temperature (MAX): 55 °C
- Ambient Temperature: 10 to 30 °C
- Anode to Cathode Temperature: (Note 1)
Motivation

RK2M High Pressure Spark Gap

SSDS may consume more volume however, can provide virtually infinite events with discharges up to 35kA with 8/20μs waveform

PRODUCT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC breakdown voltage range (SBV)</td>
<td>kV</td>
<td>0.5...5</td>
</tr>
<tr>
<td>Impulse ratio (8/20 μs waveshape)</td>
<td>-</td>
<td><1.5</td>
</tr>
<tr>
<td>Breakdown voltage tolerance within the lifetime</td>
<td>%</td>
<td><15</td>
</tr>
<tr>
<td>Peak current (8/20 μs) (Note3,4)</td>
<td>kA</td>
<td>5</td>
</tr>
<tr>
<td>Charge transfer, single discharge (8/20 μs)</td>
<td>Coulomb</td>
<td>4</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>Hz</td>
<td>100</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>MΩ</td>
<td>> 20</td>
</tr>
<tr>
<td>Operating temperatures</td>
<td>°C</td>
<td>-80...+200</td>
</tr>
<tr>
<td>Net weight</td>
<td>g</td>
<td>20</td>
</tr>
</tbody>
</table>

NOTES

1) Each overvoltage gap is manufactured with a specific static (or DC) breakdown voltage (SBV). This voltage can be set anywhere within the available min-max range. The SBV is specified by the addition of a dash number to the part number, giving the SBV in kilovolts.

2) Impulse ratio is measured at dynamic breakdown voltage with rise rate of 15 kV/μs = 3 max @ 1.0 kV, less than 1.5 @ > 10.0 kV dc. The dynamic breakdown voltage is a function of the rate of rise of the applied voltage (dv/dt). In general, it will be higher for higher dv/dt.

3) Current pulse waveform - damped sinusoidal with the second half-wave amplitude not more than 60 % of the first half-wave.

4) The tube can be operated with peak currents up to 10 kA, however limiting the peak current can increase spark gap life.

OUTLINE

(All dimensions are in millimeters)

36 x 34 x 12 mm
ABB Solid State Thyatron Replacements:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VDRM V</th>
<th>VRRM V</th>
<th>I-Pulse kA</th>
<th>Device</th>
<th>Type</th>
<th>Gate Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric Blocking</td>
<td>4500</td>
<td>18</td>
<td>80</td>
<td>Discharge switch</td>
<td>Repetitive</td>
<td>None</td>
</tr>
<tr>
<td>P5TH 30J4501</td>
<td>4500</td>
<td>18</td>
<td>110</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>None</td>
</tr>
<tr>
<td>5SPY 36L4503</td>
<td>4500</td>
<td>18</td>
<td>150</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>Integrated</td>
</tr>
<tr>
<td>5SPY 36L4506</td>
<td>4500</td>
<td>18</td>
<td>150</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>Integrated</td>
</tr>
<tr>
<td>Multiwafer Components</td>
<td>13.500</td>
<td>60</td>
<td></td>
<td>Crowbar Diode</td>
<td>Non-repetitive</td>
<td></td>
</tr>
</tbody>
</table>

ABB: “Due to having higher reliability and lower maintenance costs, ABB’s optimized semiconductor components, mostly as complete assemblies, are increasingly being used to replace thyratrons and ignitrons.”
ABB Solid State Thyatron Replacements:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VDRM V</th>
<th>VRRM V</th>
<th>I-Pulse kA</th>
<th>Device</th>
<th>Type</th>
<th>Gate Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric Blocking</td>
<td>4500</td>
<td>18</td>
<td>80</td>
<td>Discharge switch</td>
<td>Repetitive</td>
<td>None</td>
</tr>
<tr>
<td>5STH 30J4501</td>
<td>4500</td>
<td>18</td>
<td>110</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>None</td>
</tr>
<tr>
<td>5SPY 35L4503</td>
<td>4500</td>
<td>18</td>
<td>150</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>Integrated</td>
</tr>
<tr>
<td>5SPY 35L4506</td>
<td>4500</td>
<td>18</td>
<td>150</td>
<td>Discharge Switch</td>
<td>Repetitive</td>
<td>Integrated</td>
</tr>
<tr>
<td>Multiwafer Components</td>
<td>13.500</td>
<td>60</td>
<td></td>
<td>Crowbar Diode</td>
<td>Non-repetitive</td>
<td></td>
</tr>
</tbody>
</table>

However, due to having relatively low di/dt capability, \(\leq 40\text{kA/\mu s} \), they can be used in only a few thyatron applications.

Remember (1) 4kV, 2cm\(^2\) Solidtron demonstrates 100kA/\(\mu s\)!!!
Solid State Ignitron Replacement

Despite smaller volume and weight, Solidtron Thyatron replacements offer (over other solid state and gas tubes):

- Integrated isolated gate drive requiring negligible power
- High reliability and lifetime
- \(\gg> 80\text{kA}/\mu\text{s} \) di/dt capability
- Bidirectional current capability
- An order of magnitude improvement in switch losses

LSS-Light Silicon Sandwich
- Silicon Power’s earliest iteration of small volume thyristors
Solid State Discharge Switches

Target Applications

- Plasma Gasification
 - waste gasification,
 - coal gasification,
 - Hydrogen production
 - Synthesized Fuel Production

- Plasma Water/Air Purification Systems
 - Cleaning of fracking water
 - Purifying in/out water for pharmaceutical manufacturing
 - Purifying in/out water for food processing
 - Airplane cabin conditioning
 - Industrial air pollution

- Lasers Systems
 - Ablation
 - Spectroscopy
 - Lithography
 - Micromachining

- Klystron Triggers
 - Satellite Communications
 - UHF Transmitters

- Linear Accelerators
 - Radiotherapy for cancer treatment
 - Radiosurgery...
 - Scientific...
 - Nuclear Fusion Reactors

- Crowbar Circuits
 - Protection of sensitive electronics...server farms, digital broadcast equipment, the Cloud...etc.

- Radar Modulators
 - Military...Army, USN, USCG, USMC, USAF
 - Commercial...Airports, Weather, Maritime

- Marx Generators
 - Lightning simulation
 - Utilities HV insulation testing

 The List goes on...
Disruptive Design

Solidtron designed specifically for Solid State Discharge Switches
- low cost discrete package
- Easily Paralleled or connected/gated in series
- Easily cooled with Off-The-Shelf Heatsink (Max dissipation only 29W/level)
- *No more large presspack clamps and heatsinks !!!*

![Graph showing predicted performance with different models and parameters](image)

John_Waldron@SiliconPower.com

PPC 2017 Brighton, UK 18-22 June, 2017
Hyper-Fast Solid State Thyatron Replacement

40kV SSTR-1 (Twin Stack) Vs. e2v CX2282

- Initial TO-247 version demonstrated 365k pulses
 - 3kA, 300ns square wave
- Similar 20kV and 60kV derivatives planned to complete the product offering
- Greatly improved power dissipation in off-state (snubber resistors much higher in value)
- TO-264 version offers **36x** increase in action
Solid State Thyatron Replacement

Prototype Thyatron Replacement Switch using
Hyper-Fast 1600V Solidtron

- $\frac{di}{dt}$ capability is >200kA/μSec
- Fiber Optically Triggered
- Small size - 9” Tall, 3.75” Base diameter
- Voltage capability of 40kV

- Yellow - 4.3kA Peak Current w/average $\frac{di}{dt}$ of ~60kA/μSec (Circuit Limited)
- Run at 100 Pulses Per Second without cooling

Anode Current
Capacitor Voltage (Ch2 Max Ref only)

50nSec rise time
Peak I >4kA
Rep Rate = 100PPS
Solid State Discharge Switch

4kV High Action Solidtron

Gen1 24kV Bi-directional Switch Assembly Pulsing 200kA
Replaced NL-8900 Ignitrons in Magnetic Pulse Welding System

- Yellow - Demonstrates 200kA Ringing Waveform (169kA Peak reverse)
- Magenta – Voltage across a single level – ~2500V to Vf
- Cyan – 1 of 12 legs – worse case current imbalance (perfect 16.6kA)

- 8 levels of 6 parallel modules
- 192 chips operating in concert, 96 high action Solidtron and 96 S-diodes
- 4 of these units were paralleled for 800kA
- More than 10,000 operational events recorded

12kV (4 level) model shown (13.25” x 10.5” x 4”)

John_Waldron@SiliconPower.com

PPC 2017 Brighton, UK 18-22 June, 2017
Solid State Ignitron Replacement

Myth: Solid State Switches Are Too Big

Solid State Switch replacement requires roughly 10x volume for same maximum ratings.

- **12kV model shown**
 - (13.25” x 10.5” x 4”)
 - *Effective Volume: 557in³*

- **555in³/12kV, 1,700in³/36kV**

- NL8900 ratings:
 - 35kV, 300kA
 - (Ø 7.25” x 10.75”)
 - *Effective Volume: 141in³*

- Failed after 200 events
- Demonstrated > 10,000 events

- **141in³/35kV**
Solid State Ignitron Replacement

Fact: Solid State Switches Are NOT Too Big

12kV model shown
(13.25” x 10.5” x 4”)
Effective Volume: 557in³

2 series levels used
1,110in³

NL8900 failed after 200 events
Solid State Switch demonstrated 10,000; predicted to
• Halving Ignitron current/voltage increases life by 10x
 o 4 units predicted to survive 20,000 events

Effective Volume:
2,250in³
(100% larger)

20,000 ignitron events Predicted
3,000,000 SSD events Predicted
Solid State Discharge Switch

6.5kV High Action Solidtron
Pulse Switch Assembly

Testing of Gen1 80kA unit at US Army Research Lab (ARL)

- Superior Current Sharing (Cathode 1-Cathode 2)
- Excellent Voltage Balance (Across 4 levels)
- Synchronized and repeatable 32 Chip turn-on

80 kA Unit #016 in ARL PFN

200 Pulse Discharges

~10in³ (163cm³)
Solid State Discharge Switch

Pulse Switch Assembly (PSA):
- Simple isolated current transformer gating
- Coaxial current delivery for very low inductance
- 10kV DC continuous operation
- Only 375μΩ resistance with a diode knee of 3.63V!

![PSA Current vs. Forward Drop](image)

PSA:
- $R = 375\mu\Omega$
- $V_D = 3.63V$

Modules:
- $R = 125\mu\Omega$ [1]
- $V_D = 1.21V$

[1] includes ~ 26 μΩ parasitics
Summary

• RoHS compliance
• Power density myth dispelled
• Unparalleled solid state $\frac{di}{dt}$ capabilities
 – Hyper-fast demonstrated 200kA/μs
 – High action, ultra-fast demonstrated 100kA/μs
• $f(i(t))$ capability, determined by experimental and/or sim data exceeds most if not all commercially available gas or solid state thyatrons available
• Designed with modular, scalable sub-assemblies
 – Enables fitment for most thyatron or ignitron applications