The C440 Silicon Controlled Rectifier ideal for phase control applications. It is an all-diffused Press-Pak device employing the field-proven amplifying gate.

FEATURES:
- High di/dt Ratings
- High dv/dt Capability with Selections Available
- Excellent Surge and \(I^2t \) Ratings Providing Easy Fusing
- Guaranteed Maximum Turn-Off Time with Selections Available
- Rugged Hermetic Glazed Ceramic Package Having \(1'' \) Creepage Path

IMPORTANT: Mounting instructions on the last page of this specification must be followed.

MAXIMUM ALLOWABLE RATINGS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>REPETITIVE PEAK OFF-STATE VOLTAGE, (V_{DRM}) (T_J = -40^\circ C) to (+125^\circ C)</th>
<th>REPETITIVE PEAK REVERSE VOLTAGE, (V_{RRM}) (T_J = -40^\circ C) to (+125^\circ C)</th>
<th>NON-REPETITIVE PEAK REVERSE VOLTAGE, (V_{RSM}) (T_J = +125^\circ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C440PM</td>
<td>1600</td>
<td>1600</td>
<td>1700</td>
</tr>
<tr>
<td>C440PD</td>
<td>1400</td>
<td>1400</td>
<td>1500</td>
</tr>
<tr>
<td>C440PB</td>
<td>1200</td>
<td>1200</td>
<td>1300</td>
</tr>
<tr>
<td>C440P</td>
<td>1000</td>
<td>1000</td>
<td>1150</td>
</tr>
<tr>
<td>C440N</td>
<td>800</td>
<td>800</td>
<td>960</td>
</tr>
<tr>
<td>C440M</td>
<td>600</td>
<td>600</td>
<td>720</td>
</tr>
<tr>
<td>C440E</td>
<td>500</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>

1 Half sinewave waveform, 10 msec max. pulse width.

Average On-State Current, \(I_{(AV)} \) .. Depends on Conduction Angle (See Charts 1 and 2)
Peak One-Cycle Surge (Non-Repetitive) On-State Current, \(I_{TSM} \) (60 Hz) .. 13,000 Amperes
Peak One-Cycle Surge (Non-Repetitive) On-State Current, \(I_{TSM} \) (50 Hz) .. 12,000 Amperes
Critical Rate-of-Rise of On-State Current (Non-Repetitive)† .. 800 A/µs
Critical Rate-of-Rise of On-State Current (Repetitive)† .. 400 A/µs
\(I^2t \) (for fusing) (for times \(\geq \) 1.5 milliseconds) See Figure 7 .. 340,000 (RMS Ampere)\(^2\) Seconds
\(I^2t \) (for fusing) (at 8.3 milliseconds) .. 700,000 (RMS Ampere)\(^2\) Seconds
Peak Gate Power Dissipation \(P_{GM} \) .. 200 Watts @ 40 µsec Pulse
Average Gate Power Dissipation, \(P_{G(AV)} \) .. 5 Watts
Storage Temperature, \(T_{ST} \) .. \(-40^\circ C \) to \(+150^\circ C\)
Operating Temperature, \(T_J \) .. \(-40^\circ C \) to \(+125^\circ C\)
Mounting Force Required .. 3000 Lbs. + 500 Lbs. − 0

13.3 KN + 2.2 KN − 0

NOTES:
† di/dt ratings established in accordance with EIA-NEMA Standard RS-397, Section 5.2.2.6 for conditions of \(V_{DRM} \leq 1000 \) Volts; 20 volts, 20 ohms gate trigger source with 0.5 µs short circuit trigger current rise time.
CHARACTERISTICS

<table>
<thead>
<tr>
<th>TEST</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive Peak Reverse and Off-State Currents</td>
<td>I_{DRM} and I_{RRM}</td>
<td>-</td>
<td>10</td>
<td>15</td>
<td>mA</td>
<td>$T_J = +25^\circ C$, $V = V_{DRM} = V_{RRM}$</td>
</tr>
<tr>
<td>Repetitive Peak Reverse and Off-State Blocking Currents</td>
<td>I_{DRM} and I_{RRM}</td>
<td>-</td>
<td>15</td>
<td>35</td>
<td>mA</td>
<td>$T_J = +125^\circ C$, $V = V_{DRM} = V_{RRM}$</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>R_{th}</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>°C/Watt</td>
<td>Junction-to-Case — Double-Side Cooling</td>
</tr>
<tr>
<td>Critical Rate-of-Rise of Off-State Voltage (Higher values may cause device switching,)</td>
<td>dv/dt</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V/μsec</td>
<td>$T_J = +125^\circ C$, Rated V_{DRM} During Linear Exponential Rising Waveform. Gate Open. Exponential $dv/dt = \frac{V_{DRM}}{\tau}$ (.632)</td>
</tr>
</tbody>
</table>

Higher minimum dv/dt selections available — consult factory.

DC Holding Current	I_H	-	400	-	mAdc	$T_C = +25^\circ C$, Anode Supply = 24 Vdc. Initial On-State Current = 2.5 amps	
DC Latching Current	I_L	-	800	-	mAdc	$T_C = +25^\circ C$, Anode Voltage = 24 Vdc. Load Resistance 12 Ohms Max.	
Turn-On Delay Time	t_d	-	0.7	1.5	μsec	$T_C = +25^\circ C$, $I_T = 50$ Adc, Gate Supply: 20 Volts, 20 Ohms, 0.1 μsec Max. Rise Time	
Gate Pulse Width Necessary to Trigger	-	-	10	-	μsec	$T_C = +25^\circ C$, Gate Supply: 10 Volt Open Circuit, 5 Ohms, 0.1 μsec Rise Time.	
DC Gate Trigger Current See Figure 10 for Recommended Gate Drive Conditions	I_{GT}	-	300	-	mAdc	$T_C = -40^\circ C$, $V_D = 6$ Vdc, $R_L = 3$ Ohms	
DC Gate Trigger Voltage See Figure 10	V_{GT}	-	150	-	5	Vdc	$T_C = +125^\circ C$, $V_D = 6$ Vdc, $R_L = 3$ Ohms
Peak On-State Voltage	V_{TM}	-	125	-	1.5	Volts	$T_C = +25^\circ C$, $I_T = 2800$ Amps Peak. Duty Cycle ≤ 0.01%
Circuit Commutated Turn-Off Time	t_q^*	-	125	-	μsec	(1) $T_C = +125^\circ C$ (2) $I_{TM} = 500$ Amps. Peak (3) $V_R = 50$ Volts Min. (4) V_{DRM} Reapplied (5) Rate-of-Rise of Reapplied Off-State Voltage = 20V/μsec (linear) (6) Commutation $di/dt = 25$ Amps/μsec (7) Repetition Rate = 1 pps. (8) Gate Bias During Turn-Off Interval = 0 Volts, 100 Ohms	

Consult factory for maximum t_q specification.
1. Maximum allowable case temperature for sinusoidal current waveform – double-side cooled

2. Maximum allowable case temperature for rectangular current waveform – double-side cooled

3. Average on-state power dissipation for sinusoidal current waveform

4. Average on-state power dissipation for rectangular current waveform

5. Average rectangular on-state current vs. ambient temperature when used with various heat exchangers

6. Average half sinewave on-state current vs. ambient temperature when used with various heat exchangers

3 of 5
7. SUB-CYCLE SURGE (NON-REPETITIVE) AND I^2t RATINGs

8. MAXIMUM ON-STATE CHARACTERISTICS

9. TRANSIENT THERMAL IMPEDANCE - JUNCTION-TO-CASE (DOUBLE-SIDE COOLED)

10. GATE TRIGGERING CHARACTERISTICS

11. MAXIMUM ALLOWABLE SURGE (NON-REPETITIVE) ON-STATE CURRENT
SUGGESTED MOUNTING METHODS FOR PRESS-PAKS TO HEAT DISSIPATORS

When the Press-Pak is assembled to a heat sink in accordance with the following general instructions, a reliable and low thermal interface will result.

1. Check each mating surface for nicks, scratches, flatness and surface finish. The heat dissipator mating surface should be flat within .0005 inch/inches and have a surface finish of 63 micro-inches.

2. It is recommended that the heat dissipator mounting surfaces be plated with nickel, tin, or silver. Bare aluminum or copper surfaces will oxidize in time resulting in excessively high thermal resistance.

3. Sand each surface lightly with 600 grit paper just prior to assembly. Clean off and apply silicon oil (GE SF1154, 200 centistoke viscosity) or silicone grease (GE G322L or Dow Corning DC 3, 4, 340 or 640). Clean off and apply again as a thin film. (A thick film will adversely affect the electrical and thermal resistances.)

4. Assemble with the specified mounting force applied through a self-leveling, swivel connection. The force has to be evenly distributed over the full area. Center holes on both top and bottom of the Press-Pak are for locating purposes only.

HEAT SINK SELECTION MADE EASY

The C440 specification sheet marks the introduction of two new characteristic curves which should greatly facilitate heat sink selection. Figures 5 and 6 plot allowable average current versus ambient temperature and case-to-ambient thermal resistance for the two most frequently encountered waveforms, 1/3 duty cycle rectangular current and 180° sinusoidal current waveforms. As soon as the average forward current and maximum ambient temperature are known, the designer can specify a heat sink thermal resistance. Note that the graphs span the range of heat sinks from water-cooled \(R_{\theta,CA} = 0.3^\circ C/W \) to free-air convection \(R_{\theta,CA} = 0.3^\circ C/W \). It is possible to linearly interpolate between the curves for \(R_{\theta,CA} \).

These curves have been derived from the following basic equation:

\[
T_J = T_A + P_{AVG} \times R_{\theta,JA}
\]

where: \(T_J = 125^\circ C \)

For increased reliability, the usual practice is to derate \(T_J \) 15-30 degrees. Figures 5 and 6 can perform this function by the simple expedient of raising \(T_A \) by a like amount.