

C791 100mm THYRISTOR PRESSPAK 5000V / 3600A

Type C791 thyristor is suitable for phase control applications such as for HVDC valves, static VAR compensators and synchronous motor drives. The silicon junction design utilizes a second generation pilot gate and a unique orientation of emitter shorts which promote the lateral expansion of conducting plasma resulting in lower spreading losses while achieving high dv/dt withstand. It is supplied in an industry accepted disc-type package, ready to mount using commercially available heat dissipators and mechanical clamping hardware

USA

Rev. 4 10/29/01

20° ±5°

C791 / 6RT302

LIMITING CHAR	ACTER	ISTICS AND	RATINGS										
Repetitive peak off- state & reverse volts @ 5Hz	\mathbf{V}_{drm} \mathbf{V}_{rrm}	T ₃ =0 to 125℃	up to 5000	v		Non-Repetitive Surge Current and I2t for Fusing							
Repetitive working crest voltage, 60Hz	V _{dwm} V _{drm}	T,=0 to 125℃	0.8V _{drm} 0.8V _{rrm}		100000 t	sm (kA)			I2t	Mar	np2	sec	10
Off-state & reverse leakage current, 60Hz	Ъ _{им} Į _{ким}	T _, =0 to 125℃	200 200	ma	_	Itsm							
Average on-state current	I T(AV)	T _{aae} = 70℃	3600	A									
Peak half-cycle non-rep surge current.	I _{rsm}	60 Hz 50 Hz	44.5 41.5	kA	_			r				\leq	
On-state voltage	V _{тм}	I _r =4000A t _r =8.3ms T_=125℃	2.00	v	_						+		
Oritical rate of rise of on-state current	di/dt. rep	T,=125℃ 60 Hz	100	A/us									
Oritical rate of rise of off-state voltage	dv/dt	т _ј =125℃ V _D =.67V _{DRM}	1000	V/us									
Recovery current.	I _{R M}	T _J =125℃ 24∕us 54⁄us	90 195	A	10000								1
Tum-on delay	t _a	$Vd=.5V_{DRM}$	4	บธ	1	Half S	ino Pulso	Durati	on to	(me)		10))
Tum-off time	T _{off}	5A/us,-100V 20V/us to 2000V	500	us	01I:C791ITSM	Than C		Durau	οπ, φ	(113)			
Thermal resistance	R_{thJC}		.005	c/w									
Externally applied clamping force	F		17000 -19000	hs.									

Gate Characteristics and Gate Supply Requirements

- THYRISTOR GATE IMPEDANCE Enhanced by fast rising gate voltage, increasing anode bias and junction temperature. It is at a minimum for dc current, zero anode bias and low temperature.
- GATE SUPPLY Prefer 50V/10 ohm for supporting the di/dt rating and life expectancy. The short circuit current risetime should be nominally 0.5us and the duration longer than the expected delay time for all magnitudes of anode bias. Practically 10-30us is recommended followed by a back porch of 750ma if needed to sustain conduction.
- MINIMUM ACCEPTABLE GATE CURRENT The intersection of the load line and gate impedance characteristic indicates the minimum value of actual current needed during the delay time interval to support di/dt.A different load line meeting this criterion may be used. •
- MAXIMUM GATE RATINGS Peak gate power,Pgm(100us) = 300 W Average gate power,Pg(av) = 50W Peak gate current,Igfm = 25 A Peak reverse voltage,Vgrm = 25 V

FULL CYCLE AVERAGE POWER DISSIPATION Sine Wave - includes spread loss as function of conduction angle

